Pemanasan model sebelum digunakan
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
Prediction Time
The following fruits and are included:
Apples (different varieties: Crimson Snow, Golden, Golden-Red, Granny Smith, Pink Lady, Red, Red Delicious), Apricot, Avocado, Avocado ripe, Banana (Yellow, Red, Lady Finger), Beetroot Red, Blueberry, Cactus fruit,
Cantaloupe (2 varieties), Carambula, Cauliflower, Cherry (different varieties, Rainier), Cherry Wax (Yellow, Red, Black), Chestnut, Clementine, Cocos, Corn (with husk), Cucumber (ripened), Dates, Eggplant, Fig, Ginger
Root, Granadilla, Grape (Blue, Pink, White (different varieties)), Grapefruit (Pink, White), Guava, Hazelnut, Huckleberry, Kiwi, Kaki, Kohlrabi, Kumsquats, Lemon (normal, Meyer), Lime, Lychee, Mandarine, Mango (Green,
Red), Mangostan, Maracuja, Melon Piel de Sapo, Mulberry, Nectarine (Regular, Flat), Nut (Forest, Pecan), Onion (Red, White), Orange, Papaya, Passion fruit, Peach (different varieties), Pepino, Pear (different varieties,
Abate, Forelle, Kaiser, Monster, Red, Stone, Williams), Pepper (Red, Green, Orange, Yellow), Physalis (normal, with Husk), Pineapple (normal, Mini), Pitahaya Red, Plum (different varieties), Pomegranate, Pomelo Sweetie,
Potato (Red, Sweet, White), Quince, Rambutan, Raspberry, Redcurrant, Salak, Strawberry (normal, Wedge), Tamarillo, Tangelo, Tomato (different varieties, Maroon, Cherry Red, Yellow, not ripened, Heart), Walnut, Watermelon.
The total number of images: 90483.
Training set size: 67692 images (one fruit or vegetable per image).
Test set size: 22688 images (one fruit or vegetable per image).
The number of classes: 131 (fruits and vegetables).
Image size: 100x100 pixels.
Filename format: imageindex100.jpg (e.g. 32100.jpg) or rimageindex100.jpg (e.g. r32100.jpg) or r2imageindex100.jpg or r3imageindex100.jpg. "r" stands for rotated fruit. "r2" means that the fruit was rotated around the 3rd axis. "100" comes from image size (100x100 pixels).
WARNING
There is a new -major version- of the dataset under release. A test archive (named fruits-360-original-size.zip) was already loaded to Kaggle. The new version contains images at their original (captured) size.
The name of the image files in the new version does not contain the "_100" suffix anymore. This will help you to make distinction between this version and the old 100x100 version.
So, if you use the 100x100 version, please make sure that the file names have the "_100" suffix. All others MUST be ignored.
END OF WARNING
Different varieties of the same fruit (apple for instance) are stored as belonging to different classes.
Fruits and vegetables were planted in the shaft of a low-speed motor (3 rpm) and a short movie of 20 seconds was recorded.
A Logitech C920 camera was used for filming the fruits. This is one of the best webcams available.
Behind the fruits, we placed a white sheet of paper as a background.
Here is a movie showing how the fruits and vegetables are filmed: https://youtu.be/_HFKJ144JuU
However, due to the variations in the lighting conditions, the background was not uniform and we wrote a dedicated algorithm that extracts the fruit from the background. This algorithm is of flood fill type: we start from each edge of the image and we mark all pixels there, then we mark all pixels found in the neighborhood of the already marked pixels for which the distance between colors is less than a prescribed value. We repeat the previous step until no more pixels can be marked.
All marked pixels are considered as being background (which is then filled with white) and the rest of the pixels are considered as belonging to the object.
The maximum value for the distance between 2 neighbor pixels is a parameter of the algorithm and is set (by trial and error) for each movie.
Pictures from the test-multiple_fruits folder were taken with a Nexus 5X phone.
Horea Muresan, Mihai Oltean, Fruit recognition from images using deep learning, Acta Univ. Sapientiae, Informatica Vol. 10, Issue 1, pp. 26-42, 2018.
The paper introduces the dataset and implementation of a Neural Network trained to recognize the fruits in the dataset.
This dataset is also available for download from GitHub: Fruits-360 dataset
Fruits were filmed at the dates given below (YYYY.MM.DD):
2017.02.25 - Apple (golden).
2017.02.28 - Apple (red-yellow, red, golden2), Kiwi, Pear, Grapefruit, Lemon, Orange, Strawberry, Banana.
2017.03.05 - Apple (golden3, Braeburn, Granny Smith, red2).
2017.03.07 - Apple (red3).
2017.05.10 - Plum, Peach, Peach flat, Apricot, Nectarine, Pomegranate.
2017.05.27 - Avocado, Papaya, Grape, Cherrie.
2017.12.25 - Carambula, Cactus fruit, Granadilla, Kaki, Kumsquats, Passion fruit, Avocado ripe, Quince.
2017.12.28 - Clementine, Cocos, Mango, Lime, Lychee.
2017.12.31 - Apple Red Delicious, Pear Monster, Grape White.
2018.01.14 - Ananas, Grapefruit Pink, Mandarine, Pineapple, Tangelo.
2018.01.19 - Huckleberry, Raspberry.
2018.01.26 - Dates, Maracuja, Plum 2, Salak, Tamarillo.
2018.02.05 - Guava, Grape White 2, Lemon Meyer
2018.02.07 - Banana Red, Pepino, Pitahaya Red.
2018.02.08 - Pear Abate, Pear Williams.
2018.05.22 - Lemon rotated, Pomegranate rotated.
2018.05.24 - Cherry Rainier, Cherry 2, Strawberry Wedge.
2018.05.26 - Cantaloupe (2 varieties).
2018.05.31 - Melon Piel de Sapo.
2018.06.05 - Pineapple Mini, Physalis, Physalis with Husk, Rambutan.
2018.06.08 - Mulberry, Redcurrant.
2018.06.16 - Hazelnut, Walnut, Tomato, Cherry Red.
2018.06.17 - Cherry Wax (Yellow, Red, Black).
2018.08.19 - Apple Red Yellow 2, Grape Blue, Grape White 3-4, Peach 2, Plum 3, Tomato Maroon, Tomato 1-4 .
2018.12.20 - Nut Pecan, Pear Kaiser, Tomato Yellow.
2018.12.21 - Banana Lady Finger, Chesnut, Mangostan.
2018.12.22 - Pomelo Sweetie.
2019.04.21 - Apple Crimson Snow, Apple Pink Lady, Blueberry, Kohlrabi, Mango Red, Pear Red, Pepper (Red, Yellow, Green).
2019.06.18 - Beetroot Red, Corn, Ginger Root, Nectarine Flat, Nut Forest, Onion Red, Onion Red Peeled, Onion White, Potato Red, Potato Red Washed, Potato Sweet, Potato White.
2019.07.07 - Cauliflower, Eggplant, Pear Forelle, Pepper Orange, Tomato Heart.
2019.09.22 - Corn Husk, Cucumber Ripe, Fig, Pear 2, Pear Stone, Tomato not Ripened, Watermelon.
MIT License
Copyright (c) 2017-2021 Mihai Oltean
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
ResNet-50 adalah salah satu varian ResNet yang memiliki 50 layer. Jika pada varian ResNet sebelumnya dilakukan skip connection sebanyak 2 layer, maka ResNet-50 melewati 3 layer dan terdapat 1x1 convolution layer. Jumlah bobot yang diperbarui selama proses pelatihan data disebut sebagai learning rate.
VGG16 adalah salah satu arsitektur Convolutional Neural Network yang memiliki layer berjumlah 16 pada kedalaman konfigurasinya. VGG16 merupakan model deep learning yang disediakan Keras yang memiliki konvolusi lebih cepat [10] dengan dioperasikan bersama pre-trained weights yang dapat memprediksi serta melakukan feature extraction.
Inception merupakan pengembangan dari Convolutional Neural Network (CNN) yang pertama kali diperkenalkan oleh Szegedy, dkk., pada tahun 2014 dalam paper berjudul “Going Deeper with Convolutions”. Very deep convolutional networks telah menjadi pusat pengembangan dalam performa image recognition belakangan ini. Contohnya adalah arsitektur Inception yang menghasilkan performa yang sangat baik dengan komputasi yang relatif rendah.
MobileNet V2 merupakan penyempurnaan dari arsitektur MobileNet. Arsitektur MobileNet dan arsitektur CNN pada umumnya memiliki perbedaan pada penggunaan lapisan atau convolution layer.Convolution layer pada MobileNetV2 menggunakan ketebalan filter yang sesuai dengan ketebalan dari input image. MobileNetV2 menggunakan depthwise convolution, pointwise convolution, linear bottleneck dan shortcut connections antar bottlenecks